知识图谱简介

什么是知识图谱?

  • Knowledge in graph form!
  • Captures entities, attributes, and relationships
  • Nodes are entities
  • Nodes are labeled with attributes (e.g., types)
  • Typed edges between two nodes capture a relationship between entities

简单的说,知识图谱就是一张图,用来描述节点之间的关系。

知识图谱的来源?

  • Structured Text (Wikipedia Infoboxes, tables, databases, social nets)
  • Unstructured Text (WWW, news, social media, reference articles)
  • Images
  • Video (YouTube, video feeds)

知识图谱如何被使用?

Human perspective:

  • Combat information overload
  • Explore via intuitive structure
  • Tool for supporting knowledge-driven tasks

AI perspective:

  • Key ingredient for many AI tasks
  • Bridge from data to human semantics
  • Use decades of work on graph analysis

常见的应用:

  • QA/Agents
  • Decision Support
  • Fueling Discovery

工业界的使用包括: Google Knowledge Graph(Google Knowledge Vault), Amazon Product Graph, Facebook Graph API, IBM Watson, Microsoft Satori, LinkedIn Knowledge Graph, Yandex Object Answer, Diffbot, GraphIQ, Maana, ParseHub, Reactor Labs, SpazioDati

典型的知识图谱架构?

基本流程如下:

  1. 数据获取
  2. 信息提取
  3. 本体映射
  4. 实体解析
  5. 知识图谱的部署
  6. 图谱具体应用


本博客所有文章除特别声明外,均采用 CC BY-SA 4.0 协议 ,转载请注明出处!